Search results for "liquid theory"

showing 10 items of 25 documents

The spectra of mixed $^3$He-$^4$He droplets

2005

The diffusion Monte Carlo technique is used to calculate and analyze the excitation spectrum of $^3$He atoms bound to a cluster of $^4$He atoms, by using a previously determined optimum filling of single-fermion orbits with well defined orbital angular momentum $L$, spin $S$ and parity quantum numbers. The study concentrates on the energies and shapes of the three kinds of states for which the fermionic part of the wave function is a single Slater determinant: maximum $L$ or maximum $S$ states within a given orbit, and fully polarized clusters. The picture that emerges is that of systems with strong shell effects whose binding and excitation energies are essentially determined over configur…

Chemical Physics (physics.chem-ph)Excitation spectrumdiffusion[PHYS.PHYS.PHYS-ATM-PH]Physics [physics]/Physics [physics]/Atomic and Molecular Clusters [physics.atm-clus]wave functionsFOS: Physical sciencesMonte Carlo methodsbinding energyMonte Carlo technique ; Excitation spectrum ;Monte Carlo techniqueliquid theoryliquid helium 3-4 mixturesPhysics - Chemical Physics[PHYS.PHYS.PHYS-CHEM-PH]Physics [physics]/Physics [physics]/Chemical Physics [physics.chem-ph]Physics - Atomic and Molecular ClustersAtomic and Molecular Clusters (physics.atm-clus)67.60.-g 66.10.Cb 61.20.Jadrops
researchProduct

Fermion Condensation in Finite Systems

2014

Here we consider another example of systems, in which fermion condensation takes place. These are what is called finite Fermi systems, i.e. systems with finite number of fermions, contrary to a solid, where the number of electrons is practically infinite. An example of a finite Fermi system is an atomic nucleus, having finite number of nucleons, protons and neutrons, which are fermions. Here we show that the fermion condensation manifests itself in finite Fermi systems as a forced merger of all, discreet for finite systems, single-particle levels, lying near the Fermi surface. On the first sight, this merger contradicts the standard Landau quasiparticle picture. Nevertheless, similar to inf…

Condensed Matter::Quantum GasesPhysicsFermion doublingTheoretical physicsAtomic nucleusQuasiparticleFermi surfaceFermionFermi liquid theoryLandau quantizationSpin-½
researchProduct

Asymmetric Tunneling Conductance and the non-Fermi Liquid Behavior of Strongly Correlated Fermi Systems

2018

Tunneling differential conductivity (or resistivity) is a sensitive tool to experimentally test the nonFermi liquid behavior of strongly correlated Fermi systems. In the case of common metals the Landau– Fermi liquid theory demonstrates that the differential conductivity is a symmetric function of bias voltage V . This is because the particle-hole symmetry is conserved in the Landau–Fermi liquid state. When a strongly correlated Fermi system turns out to be near the topological fermion condensation quantum phase transition, its Landau–Fermi liquid properties disappear so that the particle-hole symmetry breaks making the differential tunneling conductivity to be asymmetric function of V . Th…

Condensed Matter::Quantum GasesPhysicsQuantum phase transitionSuperconductivityPhysics and Astronomy (miscellaneous)Condensed matter physicsmedia_common.quotation_subject02 engineering and technologyConductivity021001 nanoscience & nanotechnology01 natural sciencesAsymmetryElectrical resistivity and conductivity0103 physical sciencesCondensed Matter::Strongly Correlated ElectronsFermi liquid theory010306 general physics0210 nano-technologyPseudogapQuantum tunnellingmedia_commonJETP Letters
researchProduct

Asymmetrical tunneling in heavy fermion metals as a possible probe for their non-Fermi liquid peculiarities

2007

Tunneling conductivity and point contact spectroscopy between heavy fermion metal and a simple metallic point contact may serve as a convenient probing tool for non-Fermi liquid behavior. Landau Fermi liquid theory predicts that the differential conductivity is a symmetric function of voltage bias. This symmetry, in fact, holds if so called particle–hole symmetry is preserved. Here, we show that the situation can be different when one of the two metals is a heavy fermion one whose electronic system is a heavy fermion liquid. When the heavy fermion liquid undergoes fermion condensation quantum phase transition, the particle–hole symmetry in the excitation spectra is violated making both the …

Condensed Matter::Quantum GasesQuantum phase transitionPhysicsSuperconductivityCondensed matter physicsMechanical Engineeringmedia_common.quotation_subjectMetals and AlloysFermionAsymmetrySymmetry (physics)Landau theoryMechanics of MaterialsMaterials ChemistryQuasiparticleFermi liquid theorymedia_commonJournal of Alloys and Compounds
researchProduct

Flat Bands and Salient Experimental Features Supporting the Fermion Condensation Theory of Strongly Correlated Fermi

2020

The physics of strongly correlated Fermi systems, being the mainstream topic for more than half a century, still remains elusive. Recent advancements in experimental techniques permit to collect important data, which, in turn, allow us to make the conclusive statements about the underlying physics of strongly correlated Fermi systems. Such systems are close to a special quantum critical point represented by topological fermion-condensation quantum phase transition which separates normal Fermi liquid and that with a fermion condensate, forming flat bands. Our review paper considers recent exciting experimental observations of universal scattering rate related to linear temperature dependence…

Condensed Matter::Quantum GasesQuantum phase transitionSuperconductivityPhysicsNuclear and High Energy PhysicsCondensed matter physics010308 nuclear & particles physicsFermion01 natural sciencesAtomic and Molecular Physics and OpticsElectrical resistivity and conductivityQuantum critical pointScattering rate0103 physical sciencesFermi liquid theory010306 general physicsFermi Gamma-ray Space TelescopePhysics of Atomic Nuclei
researchProduct

Statics and dynamics of colloid-polymer mixtures near their critical point of phase separation: A computer simulation study of a continuous Asakura–O…

2008

We propose a new coarse-grained model for the description of liquid-vapor phase separation of colloid-polymer mixtures. The hard-sphere repulsion between colloids and between colloids and polymers, which is used in the well-known Asakura-Oosawa (AO) model, is replaced by Weeks-Chandler-Anderson potentials. Similarly, a soft potential of height comparable to thermal energy is used for the polymer-polymer interaction, rather than treating polymers as ideal gas particles. It is shown by grand-canonical Monte Carlo simulations that this model leads to a coexistence curve that almost coincides with that of the AO model and the Ising critical behavior of static quantities is reproduced. Then the …

Materials sciencecritical pointsMonte Carlo methodFOS: Physical sciencesGeneral Physics and AstronomyThermodynamicsCondensed Matter - Soft Condensed MatterCritical point (mathematics)Molecular dynamicscolloidspolymer solutionsPhysical and Theoretical Chemistryliquid-vapour transformationsBinodalliquid mixturesLennard-Jones potentialMonte Carlo methodsDisordered Systems and Neural Networks (cond-mat.dis-nn)Statistical mechanicsCondensed Matter - Disordered Systems and Neural Networksself-diffusionIdeal gasliquid theoryCondensed Matter::Soft Condensed Mattermolecular dynamics methodLennard-Jones potentialSoft Condensed Matter (cond-mat.soft)Ising modelstatistical mechanicsphase separationThe Journal of Chemical Physics
researchProduct

Metallic and Insulating Phases of Repulsively Interacting Fermions in a 3D Optical Lattice

2008

The fermionic Hubbard model plays a fundamental role in the description of strongly correlated materials. Here we report on the realization of this Hamiltonian using a repulsively interacting spin mixture of ultracold $^{40}$K atoms in a 3D optical lattice. We have implemented a new method to directly measure the compressibility of the quantum gas in the trap using in-situ imaging and independent control of external confinement and lattice depth. Together with a comparison to ab-initio Dynamical Mean Field Theory calculations, we show how the system evolves for increasing confinement from a compressible dilute metal over a strongly-interacting Fermi liquid into a band insulating state. For …

PhysicsCondensed Matter::Quantum GasesOptical latticeMultidisciplinaryStrongly Correlated Electrons (cond-mat.str-el)Hubbard modelCondensed matter physicsFOS: Physical sciencesFermionsymbols.namesakeCondensed Matter - Strongly Correlated ElectronsMean field theorysymbolsStrongly correlated materialCondensed Matter::Strongly Correlated ElectronsFermi liquid theoryMetal–insulator transitionHamiltonian (quantum mechanics)
researchProduct

Fermion Condensation in Strongly Interacting Fermi Liquids

2017

This article discusses the construction of a theory which is capable to explain so-called non-Fermi liquid behavior of strongly correlated Fermi systems. We show that such explanation can be done within the framework of a so-called fermion condensation approach. In this approach, as a result of fermion condensation quantum phase transition, ordinary Landau quasiparticles do not decay, but reborn, gaining new properties, as Phoenix from the ashes. The physical reason for that is altering of Fermi surface topology. To be more specific, in contrast to standard Landau paradigm stating that the quasiparticle effective mass does not depend on external stimuli like magnetic field and/or temperatur…

PhysicsCondensed matter physicsHeavy fermionCondensationheavy-fermion compoundsFermionFermi liquid theoryquantum phase transitionfermion condensationNon-Fermi liquid behaviorFermi Gamma-ray Space Telescope
researchProduct

High Magnetic Fields Thermodynamics of Heavy Fermion Metals

2014

In this chapter, we present the comprehensive theoretical analysis of thermodynamics of HF compounds at high magnetic fields. Such analysis permits to gain a deeper insight into the interplay of high magnetic field and temperature in suppressing and retrieving the Landau Fermi liquid state in these substances. Our analysis shows that although high magnetic fields and temperatures alter the properties of ordinary Landau quasiparticles, they survive, generating the experimentally observable anomalies in the thermodynamical quantities of HF compounds. We illustrate our theoretical findings by the example of the HF compound \(\mathrm{{YbRh_2Si_2}}\).

PhysicsCondensed matter physicsHeavy fermionQuasiparticleThermodynamicsCondensed Matter::Strongly Correlated ElectronsObservableFermi liquid theoryHigh magnetic fieldMagnetic field
researchProduct

Landau Fermi Liquid Theory and Beyond

2014

In this chapter we consider the Landau theory of the Fermi liquid that has a long history and remarkable results in describing a numerous properties of the electron liquid in ordinary metals and Fermi liquids of the \(^3\)He type. The theory is based on the assumption that elementary excitations determine the physics at low temperatures, resembling that of weakly interacting Fermi gas. These excitations behave as quasiparticles with a certain effective mass. The effective mass \(M^*\) exhibits a simple universal behavior, for it is independent of the temperature, pressure, and magnetic field strength and is a parameter of the theory. Microscopically deriving the equation determining the eff…

PhysicsEffective mass (solid-state physics)Condensed matter physicsElectron liquidQuantum oscillationsFermi liquid theoryLandau quantizationFermi gasShubnikov–de Haas effectLandau theory
researchProduct